REVIEW : Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications: Tsiapalis, D. & O’Driscoll, L.; Cells 2020, 9, 991[open access]

Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity: Litao Yan & Xing Wu; Cell Biol Toxico (Dec 09 2019) [open access]… “our study provides novel insights into the chondroprotective properties of exosomes derived from the 3D culture of U-MSCs in a hollow-fiber bioreactor. More specifically, 3D-Exos increased the number and enhance the function of chondrocytes by stimulating cell proliferation, migration, and matrix synthesis, and inhibiting apoptosis. Because of its enhanced biological function and yield, 3D-Exos may represent a promising therapeutic method for the treatment of cartilage defects…”

Urine-derived stem cells facilitate endogenous spermatogenesis restoration of busulfan-induced non-obstructive azoospermic mice by paracrine exosomes. Cuncan DengYun Xie et al.; Stem Cells and Development (Jul 16 2019) [abstract]… “Our data demonstrated that transplantation of USC‐exos was able to promote spermatogenesis in the testes of  busulfan‐induced NOA mice. The possible mechanism might lay in the abundant miRNAs carried in USC‐exos…”

Extracellular Vesicles From Human Urine-Derived Stem Cells Ameliorate Erectile Dysfunction in a Diabetic Rat Model by Delivering Proangiogenic MicroRNA: Ouyang B. et al.; Sexual Medicine (2019) [open access]...Author describes high density culture of stem cells in the FiberCell Systems hollow fibre bioreactor. “Our data indicate that USC-EVs enhance the expression of endothelial cell markers, reduce collagen deposition, and improve the neurogenic-mediated erectile response in DED rats. The improvement in DED in a rodent model after administration of USC-EVs is similar to that seen after cell therapy with USCs or other types of MSCs. The cargo of proangiogenic miRNA may play an important role in endothelial repair.”

Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift: Park, JE et al.; Oncogene (2019) [abstract] ... “B16-F0, A375, A431, orA549 cells were inoculated into the extra-capillary space of each cartridge and allowed to attach to the fiber surface over 24 h. Cancer cells were maintained in DMEM supplemented with 5% Chemically Defined Medium for High Density cell culture (CDM-HD; Fibercell). CDM-HD, a chemically defined protein-free serum replacement, was used to avoid contamination of FBS-derived exosomes”. Author describes use of hollow fibre culture system and workflow of exosome isolation.

Large-scale preparation of extracellular vesicles enriched with specific micro-RNA: Yoo, KW et al. ; Tissue Engineering. 2018 [abstract] “The hollow fiber bioreactor system allows high-density culture of EV-producing cells, and the 20 kDa cutoff of the fiber allows nutrients and waste products to pass through but retains EVs (40–1000nm in diameter, molecular weight >500 kDa). We grew the HEK293-mir-133a, HEK293-mir-202, and HEK293-mir-NT cells in the system for >30 days, and collected 50mL of EV-enriched supernatant every 1 or 2 days. We discontinued the cultures only because we collected enough supernatant. Compared with supernatants of
conventional 2D cultures, expression of miR-133a-3p and miR-202-5p in the supernatants collected from the bioreactors contained 4.3-fold more miR-133a-3p or miR-202-5p in EVs. We did not compare the copy numbers of miRNA molecules per EV particle. However, we posit that higher EV particle concentrations in the supernatant could be one of the mechanisms of the increased miRNA yields. Thus the bioreactor can be used to prepare miRNA-enriched EVs continuously.”

Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes: Watson,D.C. et al.; J Extracell Vesicles. 2018 Feb 28;7(1) [open acccess] “This method can be used to produce ~40-times more EV per mL medium than conventional cell culture, and in addition these preparations lack animal proteins present in serum-supplemented media. This platform was used in the current study, and allowed the production of several litres of serum-free, EV-rich medium to be generated.”

Use of a Hollow Fiber Bioreactor to Collect Extracellular Vesicles from Cells in Culture: Yan IK et al.; Methods Mol Biol. 2018;1740:35-41 [abstract]…Author provides rationale for using FiberCell HFBR and a more-or-less complete protocol for using the system to generate concentrated EVs

Clinical Scale Production and Wound Healing Activity of Human Adipose Derived Mesenchymal Stem Cell Extracellular Vesicles from a Hollow Fiber Bioreactor. [Fibercell Poster ISEV2017]

Efficient production and enhanced tumor delivery of engineered extracellular vesicles: Watson DC et al.; Biomaterials 105, 2016: 195-205 [open access]…“…these data suggest that the use of hollow-fiber bioreactor, serum-free media [CDM-HD] and an optimized purification protocol represent a superior method to achieve high yield of purified EV (yields were >3 mg/week from a single lab-scale [20ml, Medium Size] culture cartridge)..”

In vitro toxicology studies of extracellular vesicles: Maji,S. et al.; Journal of Applied Toxicology (2016) [abstract]

Comparative Secretome Analyses Using a Hollow Fiber Culture System with Label-Free Quantitative Proteomics Indicates the Influence of PARK7 on Cell Proliferation and Migration/Invasion in Lung Adenocarcinoma: Ying-Hua Chang et al, J. Proteome Res. 2012, 11, 11, 5167-5185 [abstract]